
Exploiting Unstructured Sparsity on

Next-Generation Datacenter Hardware

Mike Ashby, Christiaan Baaij, Peter Baldwin, Martijn Bastiaan, Oliver Bunting, Aiken Cairncross,

Christopher Chalmers, Liz Corrigan, Sam Davis, Nathan van Doorn, Jon Fowler,

Graham Hazel, Basile Henry, David Page, Jonny Shipton, Shaun Steenkamp

myrtle.ai

Abstract—Recurrent neural networks (RNNs) form a signif-
icant proportion of data center deep learning inference (29%
[1]). This includes workloads like machine translation, speech
synthesis and speech transcription. Such models can be substan-
tially compressed, reducing computational cost. In this paper we
show, with explicit reference to a benchmark transcription model,
how to train such models to very high levels of sparsity (greater
than 95%) with minimal loss of accuracy (less than 0.23%).
We then present our scalable tile-based accelerator architecture,
which can exploit the unstructured sparsity of such models to
accelerate inference. We demonstrate the performance of our
MAU accelerator on an Intel® Stratix® 10 FPGA1 ,2 data center
board highlighting this platform as an ideal target for data center
RNN inference tasks. We demonstrate how algorithm-accelerator
co-design can achieve extremely high performance on models with
high levels of unstructured sparsity.

I. INTRODUCTION

Myrtle’s five year focus on Deep Neural Network accelera-

tion (DNN) has enabled the company to build up a thorough

knowledge of a diverse range of machine learning workloads.

The company has focused its efforts on creating optimized

recurrent neural networks. Today, Myrtle is a leading expert

in the creation of optimized implementations for cloud-based

speech applications, a fact recognized with their codebase and

models being provided as the speech inference benchmark for

the MLPerf consortium.

Deep learning inference demands are rapidly growing as

companies increasingly incorporate these powerful, but com-

putationally challenging, systems into their infrastructure and

products [2]–[5]. Facebook notes that a “significant fraction of

the future demand is expected to come from workloads corre-

sponding to DL [deep learning] inference” and show a nearly

4× rise in server demand for deep learning inference over 7

quarters [4]. Furthermore, Google has previously projected a

need to double their total number of data centers in order to

meet the computational demands imposed by people using 3

minutes of voice search per day [1].

Recurrent neural networks have achieved state-of-the-art

results in language modelling [6]–[10], speech recognition

[11]–[13], speech synthesis [14]–[16] and machine translation

[17]. Productionized versions of these models typically contain

tens to hundreds of millions of parameters but some have been

scaled to billions of parameters given enough data [4], [10],

[18]. Increasing the size of a model also increases its compute

and memory requirements. Reducing the computational cost

of these models translates directly to cost and energy savings

for service operators.

At the same time, the rate at which general-purpose proces-

sors are improving is decreasing. This is due to technological

factors such as the end of Dennard scaling and slowdown

of Moore’s law, architectural factors such as the inability

to further exploit instruction level parallelism and parallel

processing due to Amdahl’s law, and because of a shift in the

computing paradigm away from traditional desktop computers

to mobile and hyperscale computing [19].

The combination of increasing inference demand, the trend

towards larger models and hence their increasing computa-

tional and memory requirements, and a decreasing rate of im-

provement in general-purpose processors means that hardware

must be scaled out or sub-optimal models deployed in order to

meet peak throughput and minimum latency targets. Scaling

out is an expensive proposition, requiring huge capital expense

to provide infrastructure in addition to computing hardware.

The data center sector is estimated to account for 1.4% of

global electricity consumption [20], therefore performance-

per-watt improvements in processing have significant impact

at scale.

An alternative solution is the use of specialized accelerators

designed for deep learning inference. This enables the joint

optimization of the model, numerics, and hardware platform

resulting in performance gains – latency, throughput, and

performance-per-watt – beyond that achievable through opti-

mization of any one of the individual components alone [21].

However, the use of an application-specific integrated circuit

(ASIC) may not be desirable. Model architectures, numer-

ics, and other optimization techniques are developing rapidly

meaning an ASIC can quickly become obsolete. Furthermore,

if the ASIC is unable to be utilized for anything other than the

acceleration of today’s deep learning models then a significant

amount of resources may sit idle the majority of the time due

to diurnal and annual load cycles.

Field-programmable gate arrays (FPGAs) can be used to

accelerate deep learning inference whilst avoiding these issues.

They are dynamically reconfigurable which enables the rapid

iteration and adoption of the latest models, numerics, and other

optimizations. This also ensures that the underutilization of

resources is avoided as they can be reconfigured to perform

other tasks during periods of low load.

In this paper we apply two simple optimization techniques,

that have minimal impact on final test accuracy and are

applicable to a wide range of neural networks, to a speech

transcription model – DeepSpeech [11] – that is represen-

tative of recurrent neural networks deployed in production

systems today. We show how these optimizations enable the

model to be deployed with Myrtle’s MAU accelerator, a high-

performance sparse linear algebra accelerator running on an

Intel® Stratix® 10 FPGA. The accelerator achieves low-

latency processing at batch-size 1.

II. SPEECH TO TEXT ALGORITHM

Speech to Text (STT) is the task of transcribing an acoustic

speech signal into a sequence of characters or words.

Effective Speech to Text processing has been demonstrated

by Baidu’s DeepSpeech model. The DeepSpeech model is a

neural network architecture for speech recognition [11]. The

network contains 5 hidden layers — the first three are fully

connected, the fourth is a bi-directional recurrent layer that

uses an LSTM cell and the fifth is a fully connected layer.

After the fifth hidden layer there is an additional softmax

output layer that computes a probability distribution over the

desired output alphabet. This architecture is summarized in

TABLE I where the # Parameters column refers to the specific

model we discuss in this report that uses a hidden size of 2048.

A preprocessing step is applied to the input audio stream

prior to the network’s application. This slides a window of

length 25ms over the input audio sequence with a stride of

20ms. 26 Mel-frequency cepstral coefficients (MFCCs) are

computed for the audio contained within the window at each

position. The ith input to the network is a vector of length

494. This is a concatenation of the 26 MFCCs computed at

the ith window position plus the vectors of MFCCs computed

over the 9 preceding and 9 succeeding window locations.

The network is applied to this input sequence of vectors

to produce an output sequence of the same length. A con-

nectionist temporal classification (CTC) beam search decoder

converts from this output sequence of probability distributions

over characters in an alphabet to a single sequence of words

[22].

TABLE I
DEEPSPEECH ARCHITECTURE SUMMARY

Layer Type # Parameters (M)

0 Input -
1 Fully Connected 1.01
2 Fully Connected 4.20
3 Fully Connected 8.39
4 Bidirectional LSTM 100.70
5 Fully Connected 8.39
6 Softmax Output 0.06

Total 122.75

III. MODEL COMPRESSION

Model compression reduces the size of the model in order

to reduce computational cost and memory bandwidth. This

reduces the requirements of the processing platform either

by reducing execution time for the algorithm or reducing the

circuit size required. Both of these reduce power consumption

and operating cost.

We utilize two orthogonal forms of model compression:

sparsity and quantization. We utilize these techniques without

significant degradation in algorithmic performance.

A. Sparsity

Inducing sparsity within a model decreases the total effec-

tive number of parameters by explicitly setting some to zero.

With suitable hardware support this significantly improves the

effective arithmetic intensity of the system as computations

involving parameters with zero values can be implicitly exe-

cuted without a memory access or multiplication. Furthermore,

these parameters do not need to be stored, reducing the overall

memory requirements. When targetting an FPGA platform,

this enables the storage of weights entirely in on-chip RAM.

Pruning techniques are an effective class of methods that in-

duce sparsity within a model. Let the importance, or saliency,

of a parameter be the size of the increase in the loss or error

function if that parameter were to be set to zero. Parameters

with higher saliency will cause the error to increase more

when removed. Pruning techniques remove the parameters

with lowest saliency. However, finding these parameters is a

non-trivial problem [23].

In this paper we discuss and apply magnitude-based prun-

ing. This is a specific pruning technique that has been suc-

cesfully used to induced high-levels of sparsity in a variety of

neural networks [23]–[30]. It makes the non-trivial problem

tractable by assuming that a parameter’s magnitude closely

approximates it’s saliency and hence finding the least salient

parameters reduces to either a linear scan through, or sort of,

the model’s parameter vector which are O(n) and O(n log n)
operations respectively.

We modify the model’s original training loop to incorporate

magnitude-based pruning. The model is first trained as per the

original scheme for a number of epochs. The remaining epochs

are altered such that an increasing percentage of the least

salient parameters are set to zero each time a certain number

of steps are performed. This gradually increases the sparsity

of the network from 0% up to the target sparsity percentage.

This procedure is outlined in Algorithm 1.

Algorithm 1 Magnitude-based Pruning Training Loop

init mask for each parameter vector to prune

for θi ← model.to_prune do

Mi ← J(θi.size)

end for

train network, gradually increasing sparsity

sparsity← 0.0
for epoch← {1, 2, . . . ,n_epochs} do

for step, sample← enumerate(data) do

update sparsity, masks and prune parameters

sparsity← schema(epoch, step)

for θi ← model.to_prune do

Mi ← update_mask(θi, Mi)
θi ← θi ⊙Mi

end for

exec forward, backward passes and update params

train_step(model, data)

end for

end for

Algorithm 1 creates a binary mask vector Mi for each

parameter vector θi that is to be pruned. The masks initially

contain all ones. The sparsity is gradually increased according

to a sparsity schema that returns a % for a given epoch and

step during training.

Fig. 1 summarizes the effect of this process on the dis-

tribution of the network’s parameters. We modify the training

hyperparameters during this process to maximize performance

on the validation data. This work is an advancement on [31].

Results are presented in Section V-A.

This method of training sparsity into the model results in

unstructured sparsity. We do not require that specific sparsity

patterns are created into the model for the accelerator pro-

posed. This allows weights to remain at non-zero, where most

significant to algorithm performance.

B. Quantization

Quantizing a model reduces the number of bits used to rep-

resent each parameter and/or each activation during inference.

In this paper we quantize both the IEEE 754 single-precision

floating-point weights and activations of the original model to

8-bit integers. This reduces the size of the model by a factor

of 4 resulting in an immediate 4× improvement in arithmetic

intensity and a 4× decrease in data bandwidth requirement. In

turn this results in a smaller circuit design, and the ability to

store weights in on-chip memory, consuming less power than

reading from external DRAM memory. [4], [32], [33]

We base our quantization schema on that presented in [34],

which is further described in [32], that has been shown to

be applicable to a wide range of models including MobileNet

v1 and v2, Inception v3, ResNet 50 and 152, and Google

Neural Machine Translation (GNMT) [17]. We use a per-layer

symmetric linear quantization scheme for the weights where

a 32-bit floating-point value x is mapped to an 8-bit integer

xQ ∈ [−128,−127, . . . , 127]. This schema is defined in

(1) where ∆ is the scale value computed based on the largest

absolute value in the weight vector being quantized. We ensure

that the pruned weights in the original 32-bit floating-point

vector remain set to zero after the quantization process.

xQ = clamp

(

round

(x

∆

)

,−128, 127
)

(1)

The weights tend to be symmetric around zero hence we

apply a symmetric quantization schema. This is not true for

activations — layers followed by a ReLU activation function

produce vectors that only contain non-negative values. We

therefore use an asymmetric linear quantization scheme for the

activations where a 32-bit floating-point value x is mapped to

an 8-bit integer xQ ∈ [0, 1, . . . , 255]. This schema is detailed

in (2) where the zero point z and scale ∆ are computed based

on an exponential moving average of the smallest and largest

activations taken over a small sample of the training dataset.

xQ = clamp

(

round

(x

∆

)

+ z, 0, 255
)

(2)

We apply our quantization scheme after the modified train-

ing procedure, as described in Section III-A, has finished.

IV. AN UNSTRUCTURED SPARSE MATRIX ACCELERATOR

To efficiently compute the compressed model, we imple-

ment a dedicated accelerator on FPGA hardware. This enables

us to use computational structures that are able to exploit

sparsity created in the model, by the training process outlined

above.

The majority of computation to be performed in deep

learning networks is matrix-vector multiplication. This is

therefore the primary target for efficient computation. We

achieve highest acceleration performance by maximising the

use of the embedded multiply resource available on the FPGA.

Using multipliers efficiently requires that there is sufficient

random access memory bandwidth to read activation values

from memory to feed all the multipliers on each clock cycle.

A. Tile Based Architecture

Building a large and fast design on the largest FPGAs

requires suitable data architectures, in order to be able to move

data efficiently around the design, without routing congestion

or slowing the achievable clock frequency. We solve this using

a scalable tile based architecture. This allows data in the

network to flow point to point, therefore providing an ex-

tremely large instantaneous bandwidth within the accelerator,

and removing bottlenecks for data flow within the accelerator.

Using a tile based architecture reduces the routing options

between cores, lending itself to layout on the FPGA grid

structure, that can be realized using Intel® HyperFlex™ fast

interconnect within the FPGA.

Our MAU accelerator is a grid of computation cores. The

computation cores are optimized for high throughput and low

latency multiply compute on unstructured sparse matrices.

The routing infrastructure connects the cores and supports

configurable routing, to allow different network topologies

to be placed on the accelerator. Each routing element is

connected to 5 different endpoints (north, south, east, west and

Fig. 1. Prune-retrain process for maintaining model accuracy

core). This limits the size and complexity of routing elements,

and limits the amount of routing resource required in any given

area of the FPGA.

Fig. 2 shows the interconnection of cores via routing

interconnect. Each routing connection supports 3.3GBytes/s

full duplex data transfer. This provides sufficient bandwidth to

transfer data through the network, given the rate at which data

is generated internally. Routing also supports the duplication of

data to multiple output ports, to provide the branching needed

for a neural network description.

Our accelerator design is targeted to a large Intel® Stratix®

10 FPGA at high resource utilization. To support the toolchain

through fitting and routing, we use floorplanning for each tile,

in order to achieve the best possible layout for the design.

The accelerator input and output data is mapped to PCIe

addressable memory, with a defined entry and exit point into

the routing infrastructure. We use a PCIe x16 lane interface to

provide sufficient data bandwidth to transfer data to and from

the accelerator.

B. Accelerator Design to Exploit Sparsity

Ensuring optimal cycle efficiency of the multiplier resource

requires specialized data structures around the multiplier and

memory resource. Sufficient high bandwidth memory accesses

must be provided so that random access activation lookup can

be made every clock cycle so that multipliers are always active.

The accelerator is optimized to work with a model where

only 1 in 16 weights per row are non-zero, corresponding to a

sparsity level of greater than 93.75%. The accelerator is able

to handle unstructured sparsity patterns, where weights can

be distributed at random across a matrix row. The accelerator

performance is optimal when weights approximate an even

distribution across a row, but are not forced into a specific

sparsity pattern. Non-optimal weight distribution is handled

as additional processing cycles. For our implementation of

DeepSpeech, we are able to train the model to provide

an unstructured sparsity pattern that provides optimal cycle

efficiency without loss in accuracy of the model.

Processing takes place as follows: 1. Read a matrix row

from memory, this is stored in compressed format, so that all

weights for a single row can be read in one cycle (64 weights,

corresponding to a 1024 wide matrix when uncompressed).

2. Read the activations corresponding to each compressed

weight. Our memory architecture allows sufficient random

access memory bandwidth to read activations for the majority

of cases, where the unstructured sparsity pattern for the row is

optimal for the accelerator. Where there is insufficient band-

width, the processor will stall for a cycle giving a reduction

in overall performance. 3. Multiply each weight-activation pair

and then accumulate across the row to compute the dot-product

for the row. 4. Where a row has been split across multiple

cores (two cores are required for a row length of 2048), the

row results are combined to give a true accumulation for the

row, before passing to the next level in the network.

C. Computation Cores

In addition to matrix-vector multiplication, the accelerator

must support LSTM pointwise operations, the addition of

biases and ReLU non-linearities. These are applied after the

multiplication to support LSTM processing fully on-chip,

without adding significant complexity to the design. To im-

plement the DeepSpeech LSTM network, the accelerator is

configured to define the weights, routing and use of non-

linearities and biases. We use our compiler to map the network

description onto the accelerator.

We divide the DeepSpeech model computation across multi-

ple computation cores. Each core is sized to calculate a single

matrix for 4 rows in parallel, for up to 1024 columns per row,

where each row is compressed to 1/16th of its original size.

Where the row size for a network operation is longer than

1024 columns, the row is calculated across multiple cores.

Fig. 3 shows the architecture of the core. Each core can

compute 256 multiply operations and 256 additions per clock

cycles, giving an equivalent performance figure of 8.192

GOPS/MHz for an uncompressed row. At a target design of 34

cores and 250MHz, this yields a headline processing capacity

of 69.6 TOPS. When operational factors including the loading

of the activations into memory are taken into account, the true

processing capacity of the design has a headline figure of 67.5

TOPS.

D. Mapping DeepSpeech Network onto the Architecture

The MAU accelerator is agnostic of the network architecture

placed upon it, the network is configured at run time rather

Fig. 2. Routing Infrastructure

Fig. 3. Computation Core Architecture

than compile time in order to describe the network processing

that must be placed upon it. This allows the FPGA image to

be used for multiple network descriptions without the need to

recompile the design.

Our compiler takes a description of the model and weights

and generates the configuration for the accelerator.

To implement DeepSpeech on the FPGA, we use 34 com-

putation cores in the accelerator. We map the DeepSpeech to

the cores as shown in TABLE II. We map all but layers 5

and 6 to the FPGA. These layers are processed on the CPU

co-processor. This yields a mapping that is 80.1% efficient

in terms of utilising the effective TOPs of the accelerator for

DeepSpeech.

V. PERFORMANCE

A. Model Compression

We train the DeepSpeech model described in Section II on

the training subsets of the permissively licenced and com-

monly used LibriSpeech corpus [35]. The LibriSpeech training

TABLE II
MAPPING DEEPSPEECH TO COMPUTATION CORES

Layer Type Number Cores Core Efficiency (%)

1 Fully Connected 2 12.5
2 Fully Connected 4 25
3 Fully Connected 4 50
4 Bidirectional LSTM 24 100

Total 34 80.1

data contains approximately 1000 hours of audio samples, each

of which is approximately 1 to 30 seconds in length, based on

volunteer readings of public domain texts.

Performance is evaluated by comparing the mean word

error rate (WER) over LibriSpeech’s clean validation dataset

during development and LibriSpeech’s clean test set for the

final model. The WER of a single transcription is defined

as the sum of the number of word insertions, deletions or

substitutions required to convert from the model output to

the target transcription divided by the length of the target

transcription.

We compare a dense single-precision floating-point baseline

model to a dense 8-bit integer model, a sparse single-precision

floating-point model and a sparse 8-bit integer model. The

results are summarized in TABLE III where each statistic is

the median of 5 runs.

The test set has only been evaluated once, just prior to

publication.

TABLE III
DEEPSPEECH SPARSITY AND QUANTIZATION RESULTS

Sparsity (%) Precision Validation WER Test WER

0.0 32-bit float 6.33 6.06
0.0 8-bit integer 6.38 6.17

96.0 32-bit float 6.32 6.25
96.0 8-bit integer 6.35 6.29

The model compression techniques in combination show a

negligible degradation in word error rate for the validation

set. When applying the trained results to the test set, the

compressed model shows an absolute degradation of 0.23%

in word error rate compared to the dense floating-point imple-

mentation.

B. Accelerator Performance

Mapping the compressed model to Myrtle’s MAU acceler-

ator allows the performance of our approach to be compared

to standard CPU and GPU processing models. We present

key parameters and processing performance in TABLE IV,

for our accelerator in comparison to a NVIDIA V100 GPU

and an Intel® Xeon®. These are top of the range platforms

within their respective classes. The GPU and CPU models are

not sparsified, giving reference implementations for effective

throughput. For the CPU and GPU profiling we use larger

batch sizes, where the batch size is chosen to maximize

performance on the given platform.

We measure power of the FPGA during inference using

an Intel® provided board test system for the Stratix® 10

development platform. Power measurements on the CPU are

taken during inference using the turbostat power monitoring

software. Power measurements for the GPU are taken using

NVIDIA System Management Interface program.

In addition to raw performance, we also compare latency

for the different processing models. These results are shown

in TABLE V. We use a batch size of 1 for FPGA, CPU and

GPU to allow lowest latency to be compared. We measure

latency as the time taken to compute an audio input of length

1 second.

The accelerator demonstrates a 165× improvement in effec-

tive throughput when compared to the Xeon and greater than

1000× improvement in performance per Watt. Compared to

the GPU, throughput of the FPGA accelerator comparable, but

the performance per Watt of the FPGA is 6× greater than the

GPU. This provides a significant improvement in the power

consumption required for speech inference and other RNN

workloads.

The MAU accelerator achieves a factor of 1000× improve-

ment in latency compared to the Xeon® and 29× improvement

in latency compared to the GPU. For batch-1 low latency

processing, the effective throughput of the GPU falls dramat-

ically, while the MAU accelerator provides performance and

low latency simultaneously.

In addition to accelerating DeepSpeech, we generate a

DeepBench accelerator using a DeepBench specific accelerator

architecture, utilising the same fast random-access memory

architecture as the DeepSpeech accelerator. The DeepBench

benchmark is a standard benchmark that measures the perfor-

mance of basic operations involved in training and inference of

deep neural networks. We configure the accelerator to measure

performance for Sparse GEMM result on a 2560 x 7680

matrix at batch size 1 as outlined in http://github.com/baidu-

research/DeepBench. Our results against this measurement are

shown in TABLE VI. We generate a random matrix with a 95%

sparsity characteristic and measure peak throughput, under

a continuous stream of activation inputs. The performance

measurements for the DeepBench accelerator do not include

loading weights or activations onto the FPGA. We compare

this to results for NVIDIA GPU Titan XP that currently holds

the benchmark.

The FPGA accelerator demonstrates better TOPS perfor-

mance than the GPU for this benchmark. Significantly, the

FPGA accelerator achieves this performance with batch 1

processing, enabling high performance to be achieved in

conjunction with low latency processing.

VI. CONCLUSION

This paper shows how optimization of a DeepSpeech im-

plementation in conjunction with dedicated accelerator design

can achieve significant acceleration without degradation in

algorithm performance. We show how to achieve FPGA based

acceleration on an unstructured sparse matrix with our MAU

accelerator.

Evaluation of our approach to algorithm-accelerator co-

design shows that we can achieve a 6× improvement in

TOPS/W over a high performance GPU. This supports our

assertion that use of FPGA processing in the data center can

have a significant impact on power consumption for speech

inference at scale. This is of primary importance for service

operators to achieve lower operating costs, and reduce their

global energy footprint.

Moreover, accelerating a sparse, quantized model on FPGA

allows us to perform low-latency speech transcription at batch

size 1 with throughput equivalent to dense matrix-multiply

accelerators that require high-batch sizes and have a higher

latency. Our MAU accelerator gives comparable throughput

to a NVIDIA V100 GPU while simultaneously achieving a

29× improvement in latency. Significantly improved batch 1

latency of the MAU accelerator better supports applications for

human-machine voice interaction, without incurring additional

cost of computation.

Specialized accelerators are able to achieve high levels

of performance, but must keep pace as model architectures

TABLE IV
ACCELERATOR PERFORMANCE FOR DEEPSPEECH VS CPU AND GPU3

Myrtle MAU Accelerator CPU GPU

Platform Intel® Stratix® 10 FPGA 2S Xeon Gold 6140M NVIDIA V100
Frequency (MHz) 250 2300 1530
Sparsity (%) 96 0 0
Quantization 8-bit integer 32-bit fp 16-bit fp
Batch Size 1 16 256
Effective Throughput (TOPS) 54.0 0.327 53.37
Power (W) 34.9 220 216
Performance per Watt (Effective GOPS/W) 1547 1.4 247

TABLE V
ACCELERATOR LATENCY FOR DEEPSPEECH VS CPU AND GPU3

Myrtle MAU Accelerator CPU GPU

Platform Intel® Stratix® 10 FPGA 2S Xeon Gold 6140M NVIDIA V100
Frequency (MHz) 250 2300 1530
Sparsity (%) 96 0 0
Quantization 8-bit integer 32-bit fp 32-bit fp
Batch Size 1 1 1
Effective Throughput (TOPS) 54.0 0.032 1.12
Latency (ms) 0.343 349 10.1

TABLE VI
DEEPBENCH ACCELERATOR VS GPU3

Myrtle DeepBench Accelerator GPU Sparse GEMM

Platform Intel® Stratix® 10 FPGA NVIDIA Titan XP
Sparsity (%) 95 95
Quantization 8-bit integer 32-bit fp
Matrix Size M=7680,K=2560 M=7680,K=2560
Batch Size 1 1500
Throughput (TOPS) 2.35 1.88
Effective Throughput (TOPS) 47 37.6

rapidly change. We use an FPGA solution to enable perfor-

mance gains through the use of dedicated computing archi-

tectures, whilst having the flexibility to update the design

to exploit new techniques. Using FPGA based acceleration

provides a robust and future proof method for exploiting the

latest model optimizations for inference.

Myrtle’s MAU accelerator, described in this paper, is avail-

able now for deployment on Intel® Programmable Acceler-

ation Cards. Contact us today on stratix eval@myrtle.ai to

evaluate the solution, verify this paper’s results and find out

how you can benefit from next generation hardware.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE

44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[2] D. Amodei and D. Hernandez, “Ai and compute,” Heruntergeladen von

https://blog. openai. com/aiand-compute, 2018.

[3] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: a datacenter infrastructure perspective,” in 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2018, pp. 620–629.

[4] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur et al., “Deep learning inference in

facebook data centers: Characterization, performance optimizations and
hardware implications,” arXiv preprint arXiv:1811.09886, 2018.

[5] T. Wood and T. Merritt, “Varying speaking styles with neural text-
to-speech,” Nov 2018. [Online]. Available: https://developer.amazon.
com/de/blogs/alexa/post/7ab9665a-0536-4be2-aaad-18281ec59af8/
varying-speaking-styles-with-neural-text-to-speech

[6] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv

preprint arXiv:1802.05365, 2018.

[7] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding with unsupervised learning,” Technical report,
OpenAI, Tech. Rep., 2018.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.

[10] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[11] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint

arXiv:1412.5567, 2014.

[12] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International conference on machine learning, 2016, pp. 173–182.

[13] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural transducers
for end-to-end speech recognition,” in 2017 IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU). IEEE, 2017, pp.
206–213.

[14] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[15] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-
to-end speech synthesis,” arXiv preprint arXiv:1703.10135, 2017.

[16] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions,” in 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2018, pp. 4779–4783.
[17] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,

M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[18] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International conference on

machine learning, 2013, pp. 1337–1345.
[19] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 6th ed. Morgan Kaufmann Publishers, 2017.
[20] P. B. Maria Avgerinou and L. Castellazzi, “Trends in data centre

energy consumption under the european code of conduct for data centre
energy efficiency,” 2017. [Online]. Available: https://developer.amazon.
com/de/blogs/alexa/post/7ab9665a-0536-4be2-aaad-18281ec59af8/
varying-speaking-styles-with-neural-text-to-speech

[21] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. S. Khudia,
J. Law, P. Malani, A. Malevich, N. Satish, J. Pino, M. Schatz,
A. Sidorov, V. Sivakumar, A. Tulloch, X. Wang, Y. Wu, H. Yuen,
U. Diril, D. Dzhulgakov, K. M. Hazelwood, B. Jia, Y. Jia, L. Qiao,
V. Rao, N. Rotem, S. Yoo, and M. Smelyanskiy, “Deep learning
inference in facebook data centers: Characterization, performance
optimizations and hardware implications,” CoRR, vol. abs/1811.09886,
2018. [Online]. Available: http://arxiv.org/abs/1811.09886

[22] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in International Conference on Machine

Learning, 2014, pp. 1764–1772.
[23] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Advances in neural information processing systems, 1990, pp. 598–605.
[24] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using

context-dependent deep neural networks,” in Twelfth annual conference

of the international speech communication association, 2011.
[25] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in deep

neural networks for large vocabulary speech recognition,” in 2012 IEEE

International conference on acoustics, speech and signal processing

(ICASSP). IEEE, 2012, pp. 4409–4412.
[26] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in neural information

processing systems, 2015, pp. 1135–1143.
[27] A. See, M.-T. Luong, and C. D. Manning, “Compression of neural ma-

chine translation models via pruning,” arXiv preprint arXiv:1606.09274,
2016.

[28] S. Han and B. Dally, “Efficient methods and hardware for deep learning,”
University Lecture, 2017.

[29] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring sparsity
in recurrent neural networks,” arXiv preprint arXiv:1704.05119, 2017.

[30] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[31] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse lstm on fpga with bank-
balanced sparsity,” 02 2019, pp. 63–72.

[32] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[33] W. Dally, “High-performance hardware for machine learning,” NIPS

Tutorial, 2015.
[34] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,

and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[35] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” in 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2015, pp. 5206–5210.

NOTES

1© Intel Corporation. Intel and Stratix are trademarks of Intel Corporation
or its subsidiaries in the U.S. and/or other countries.

2© Myrtle Software Limited. MAU Core and MAU Accelerator are
trademarks of Myrtle Software Limited in the U.K. and/or other countries.

3Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and func-
tions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information
visit www.intel.com/benchmarks.

Performance results are based on testing as of May 2019 and may not
reflect all publicly available security updates. See configuration disclosure for
details. No product or component can be absolutely secure.

Intel does not control or audit third-party data. You should review this
content, consult other sources, and confirm whether referenced data are
accurate.

Intel disclaims all express and implied warranties, including without
limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.

Myrtle does not control or audit third-party data. You should review
this content, consult other sources, and confirm whether referenced data are
accurate.

Myrtle disclaims all express and implied warranties, including without
limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.

